

BENHA UNIVERSITY FACULTY OF ENGINEERING AT SHOUBRA

Post-Graduate ECE-606 **PART #2** CAD of Electronics Lecture #1 **CAD** Fundamentals **Instructor: Dr. Ahmad El-Banna**

)anna © Ahmad

201

Dec

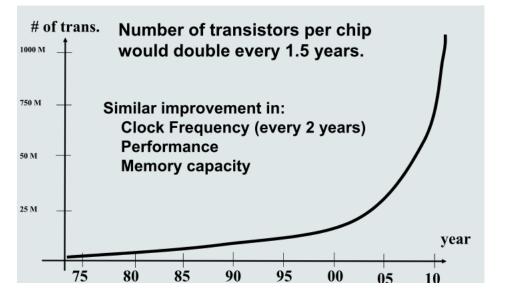
Lec#1

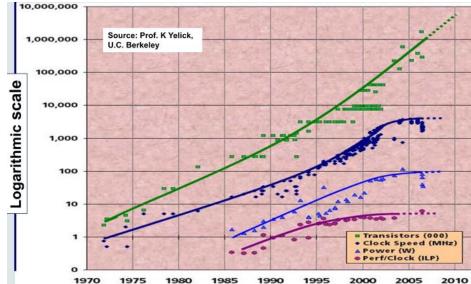
Course Objectives PART #2

- Learn the basic concepts of CAD Design for electronics.
- Electronic system design at high levels of abstraction.
- Design, implement, test and validate the electronics systems.
- Study the basics of VHDL language and its use in the design/synthesis process.
- Perform Simulations using simulation tools.
- Implement digital circuits design on FPGA platform.

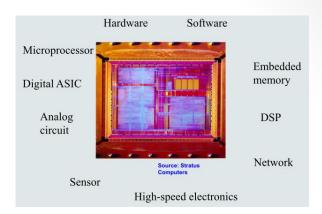
Course Information (Part 2)

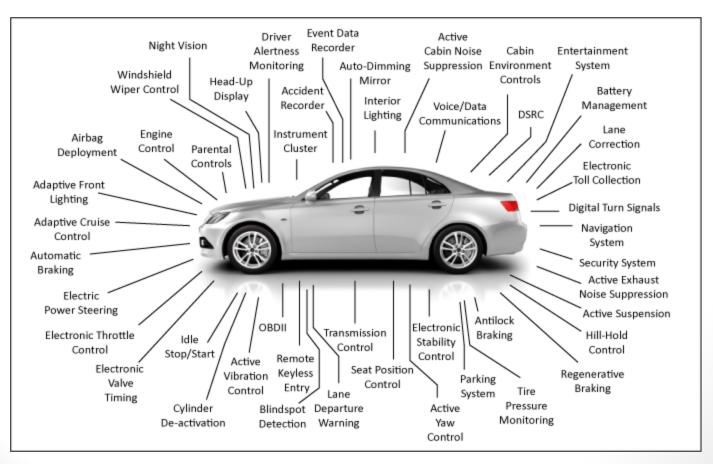
Instructor:	Dr. Ahmad El-Banna <u>http://bu.edu.eg/staff/ahmad.elbanna</u> Office: Room #306 Email: <u>ahmad.elbanna@feng.bu.edu.eg</u>
Lectures:	Saturday:14:00-16:30 Prerequisite: ECE505 & Digital Electronics course
Office Hours:	Sunday(10:30~11:30),Tuesday(14:00~16:30)&Wednesday (14:00~16:30)
Т.А.:	NA
Texts/Notes:	 Lectures slides, available by each lecture, and found online at <u>http://bu.edu.eg/staff/ahmad.elbanna-courses</u> The VHDL Cookbook, Peter J. Ashenden, 1st edition, 1990. Computer Aided Design of Electronics course lecture notes, Embedded Systems Laboratory, IDA, Linköping University, 2014 Synthesis and Optimization of Digital Systems.G. de Micheli.




ECE-606 Jec#1 Dec 2014

5


Moore's Law



System on Chip & System of Systems

THE DESIGN CHALLENGES

anna

Ahmad

 \bigcirc

Dec 2014

Lec#1

Many Design Tasks

- System specification (functionality and requirements)
- Hardware/software trade-offs
- Architecture selection and exploration
- Synthesis and optimization
- Implementation
- Testing and design for testability
- Analysis and simulation
- Verification and validation
- Design management: storage of design data,
- cooperation between tools, design flow, etc.

Lec#1

Lec#1

CE-606

Design Objectives

- Unit cost: the cost of manufacturing each copy of the system, excluding NRE cost.
- NRE cost (Non-Recurring Engineering cost): The one-time cost of designing the system.
- Size: the physical space required by the system.
- Performance: the execution time or throughput .
- Power: the amount of power consumed by the system.
- Testability: the easiness of testing the system to make sure that it works correctly.
- Flexibility: the ability to change the functionality of the system
- without incurring heavy NRE cost.
- Correctness, safety, etc.

The Main Challenges

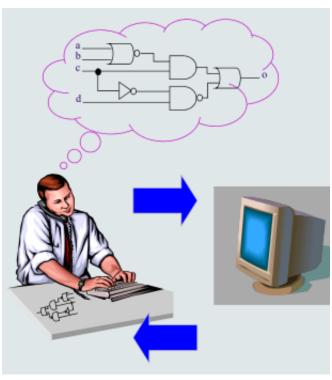
- System complexity
- Increasing functionality and diversity
- Increasing performance
- Stringent design requirements
- Low cost and low power
- Dependability: reliability, safety and security
- Testability and flexibility
- Technology challenges for cost-efficient implementation
- Deep submicron effects (e.g., cross talk and soft errors)
- Issues related to process variation

Possible Solutions:

- Powerful design methodology and CAD tools.
- Advanced architecture (modularity).
- Extensive design reuse.

Lec#1

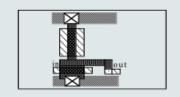
ECE-606

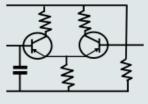


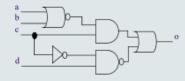
[,ec#1

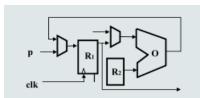
-606

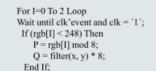
Capture and Simulate

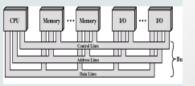

- The detailed design is captured in a model.
- The model is simulated.
- The results are used to guide the improvement of the design.
- All design decisions are made by the designers.





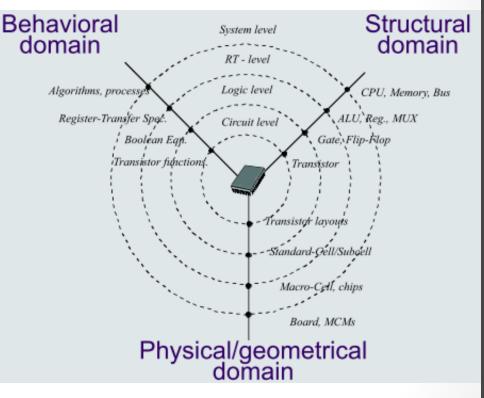

Abstraction Hierarchy


- Layout/silicon level : The physical layout of the integrated circuits is described.
- Circuit level : The detailed circuits of transistors, resistors, and capacitors are described.
- Logic (gate) level : The design is given as gates and their interconnections.
- Register-transfer level (RTL) : Operations are described as transfers of values between registers.
- Algorithmic level : A system is described as a set of usually concurrent algorithms.
- System level : A system is described as a set of processors and communication channels.



Ahmad

2014

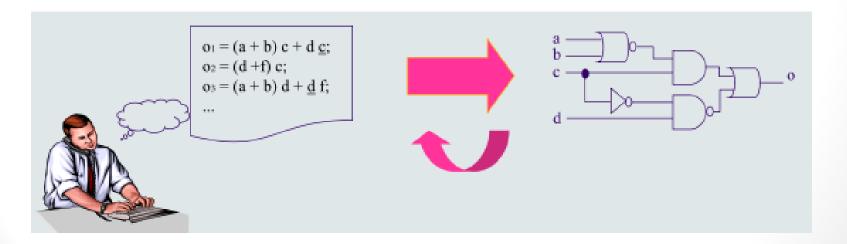

Dec

Lec#1

ECE-606

Gajski's Y-Chart

- Behavioral domain A component is described by defining its input/output functional relationship.
- Structural domain A component is described in terms on an interconnection of more primitive components.
- Physical/geometrical domain A component is described in terms of its physical placement and characteristics (e.g., shape).



Lec#1

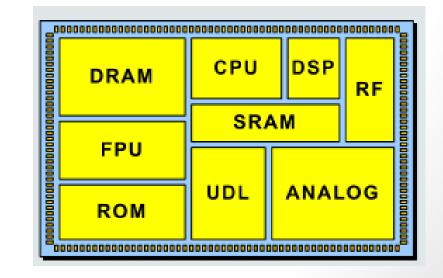
-606

Describe and Synthesize Paradigm

- Description of a design in terms of behavioral specification.
- Refinement of the design towards an implementation by adding structural details.
- Evaluation of the design in terms of a cost function and the design is optimized w.r.t. the cost function.

6

201


Dec

, Lec#1

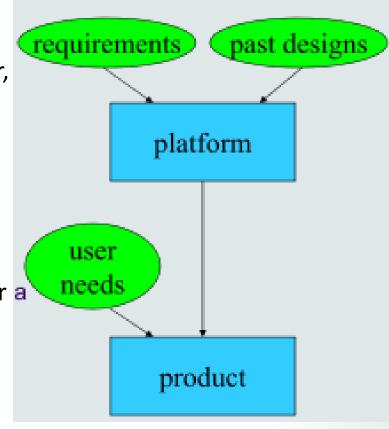
CE-606

Core-based Design

- Utilization of pre-designed and pre-verified cores:
 - Reuse of large IP blocks, such as CPU, DSP, memory modules, communication infrastructure, and analog blocks.
- Divide-and-conquer design methodology.
- Flexibility based on different core description levels:
 - Soft: RT level (synthesizable VHDL/Verilog).
 - Firm: Gate-level netlist.
 - Hard: Layout.
- Legal issues:
 - IP right protection.
 - Liability in case of failures.

كاية اليندسة بشيرا

Dec 201 , Lec#1 **CE-606**



- A platform is a partial design:
 - for a particular application area;
 - includes embedded processor(s);
 - may include embedded software;
 - customizable to specific requirements.
- A platform captures the good solutions to the important design challenges in a given application area.
- A method for design re-use at all abstraction levels based on assembling and configuring platform components in a rapid and reliable fashion.
 - It reuses architectures.

Platform-based Design Steps

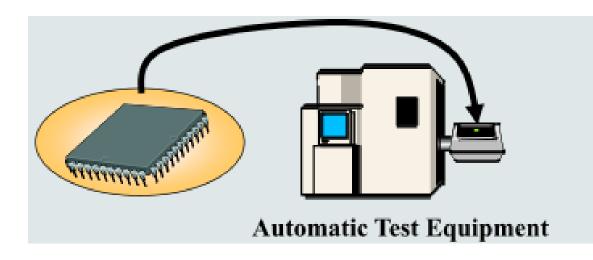
- Design the platform.
 - A highly configurable system architecture.
 - Optimize for performance, power, etc.
 - Useful for a set of applications.
 - Tools to explore the different configurations.
- Use the platform.
 - Modify hardware components for a particular customer's needs.
 - Optimize the software.
 - HW/SW integration and test.

THE TEST PROBLEMS

ECE-606, Lec#1, Dec 2014

 \odot Ahmad El-Banna

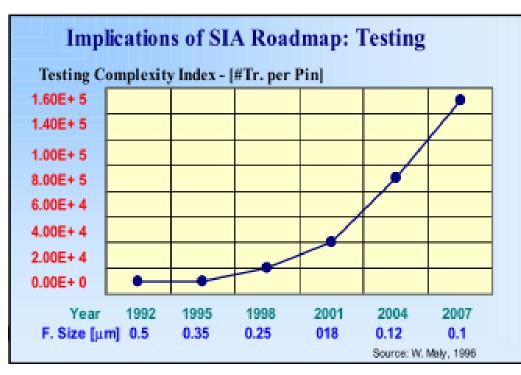
Lec#1


Different from the design task, testing is performed on each individual chip, after it is manufactured (volume sensitive).

Testing aims at the detection of physical faults (production)

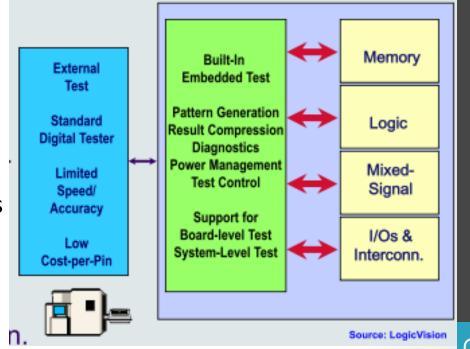
errors/defects and physical failures).

Testing and its Current Practice


 The common approach to perform testing is to utilize an Automatic Test Equipment (ATE).

High Test Complexity

- # of transistors increases exponentially.
- # of access port remains stable.
- Implication:
 - Test Complexity Index (# of transistors per pin) increases rapidly.



, Lec#1

ECE-606

Built-In Self Test (BIST)

- Solution: Dedicated built-in hardware for implementing test functions.
 - No need for expensive
 - ATE.
 - At-speed testing.
 - Concurrent test possible.
 - Support O&M.
 - Support field test and diagnosis
- Design for the best BIST mechanism = optimization.
- Testing => Design

201

Dec

Lec#1

CE-606

- System specification with very high-level languages.
- Modeling techniques for heterogeneous system.

Challenges Still Remain

- Testing issue to be considered during the design process.
- Design verifications -> get the whole system right the first time!
- Very efficient power saving techniques.
- Design techniques to address process variation.
- Temperature aware design approaches.
- Powerful optimization algorithms.
- Parallel computers for design algorithms.

 \mathbf{T}

Dec 201

Lec#1

-606

- For more details, refer to:
 - Computer Aided Design of Electronics course lecture notes.
 - The VHDL Cookbook, Peter J. Ashenden, 1st edition, 1990.
- The lecture is available online at:
 - <u>http://bu.edu.eg/staff/ahmad.elbanna-courses</u>
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>

